
A Mathematical Programming Language
Extension for Multilinear Algebra

Felix Friedrich1, Jürg Gutknecht1, Oleksii Morozov2, and Patrick Hunziker2

1 Computer Systems Institute, ETH Zürich, Switzerland
{friedrich,gutknecht}@inf.ethz.ch

2 University Hospital Basel, Switzerland
{AMorozov,PHunziker}@uhbs.ch

Abstract. Recent results of our ongoing research in the design of a
programming language for multilinear algebra are presented. Innovations
are the introduction of range-valued indexers, the definition of array-
structured object types and the institution of arrays with a dynamic
number of dimensions. Together with our conceptual decisions such as
the commitment to strict value semantics these concepts help to write
highly readable, compact and efficient code. 3

1 Introduction

In Linear Algebra, elementary objects of computations are expressions of vec-
tors, matrices and tensors. Existing languages do generally not provide a generic
support for such terms or require use of unnatural notation, bulky frameworks
or intricate libraries. Often, they provide the option of using a high-level but
inefficient mechanism or do not support basic safety mechanisms such as range
checking. Additionally, we are not aware of a system that intrinsically supports
tensors on the level of a programming language.
A simple but nevertheless fundamental example is the implementation of matrix
multiplication that should be written in the natural form C = A ·B rather than
using three nested loops. In most multi-purpose languages the latter is necessary.
In mathematical packages, usually the first form is supported but often at the
expense of little efficiency when dealing with more generic algorithms. A support
of such expressions within a language is highly desirable and from a technical
point of view, can be integrated in a straightforward way.
In [2], we have already presented an approach for mathematical programming
in linear algebra. We could show that an economic extension of a modern object
3 Contributions F.Friedrich and J.Gutknecht have designed the programming lan-

guage extension with feedback from P .Hunziker and O.Morozov. F. Friedrich has
implemented the necessary compiler- and runtime-support. The compact algorithm
for the SVD decomposition (Fig. 2 and Fig. 5) stems from P.Hunziker. O.Morozov
has provided the sparse tensor multiplication (Fig. 7) as part of his library on non-
uniform spline interpolation of multidimensional signals written in our language.

oriented programming language towards a notation similar to that of Matlab,
led to more compact and readable notation while still preserving the high effi-
ciency of a compiled high level language. Moreover, although still being a safe
type- and range-checked language, it proved to have very high potential with re-
gards to efficiency for the reason of block-wise operations, the usage of processor
vector capabilities, the avoidance of cache misses and the utilization of parallel
processors. Above all, fundamental decisions such as the commitment to strict
value semantics and pointer-freeness led to a more natural and less error-prone
notation.
As an example of our approach, consider the following excerpt from the imple-
mentation of a Singular Value Decomposition in Active Oberon (Fig. 1). With
the new concepts (such as range-valued indexers and certain operators in the
language), the same piece of algorithm can be written much more compactly as
displayed in Fig. 2.

var u: pointer to array of array of real;
s,h,f: real; i,j,k,l,m,n: integer;

(* ... *)
for j := l to n do

s := 0.0;
for k := i to m do

s := s + u[k, i] * u[k, j]
end;
f := s / h;
for k := i to m do

u[k, j] := u[k, j] + f * u[k, i]
end

end;

Fig. 1. Small part of SVD in classical notation

var u: array [*,*] of real;
s,h: real; i,j,l,m,n: integer;

(* ... *)
for j := l to n do

s := u[i..m,i] +*u [i..m,j]; (* scalar product *)
u[i..m,j] := u[i..m,j] + s/h* u[i..m,i];

end;

Fig. 2. New approach: algorithm as in Fig. 1

2 The Language

We decided to implement the language as an extension of (Active) Oberon be-
cause Oberon already permits to implement mathematical algorithms in clear
and structured form. In principle, however, it should be possible to transfer the
ideas to any other imperative programming language in very similar form.
On a first sight, our new arrays are declared and used just like normal arrays
in Oberon. The choice of strict value semantics however additionally allows the
declaration of dynamic arrays without the unnatural visible notion of pointers
(cf. Fig. 3).

2.1 Sub-array Structures

Very often operations are not performed on the complete array but rather on sub-
array structures, such as (parts of) columns or rows of a matrix. A first example
with operation on rows and columns of a matrix has already been displayed in
Fig. 2. The accessibility of substructures of arrays provides the possibility to use
optimized vector-oriented algorithms without having to copy parts of the array
or to process element-wise. Substructures of arrays are accessed via range-valued
expressions like a..b BY c. We have provided the star ’*’ for a placeholder of
an arbitrary range. Therefore the expressions displayed in Fig. 3 are all valid.
Note the automatic type conversion in Q(v[*]).
var

M,N: array [*,*] of real;
v: array [*] of integer;
w: array [*] of real;

procedure P(var a: array [*,*] of real);
procedure Q(const a: array[*] of real);
procedure R(): array [*] of integer;

begin
new(M,3,5); NEW(w,10); (* creation *)
M := [[1 ,2,3] ,[4,5 ,6]]; (* (re -) allocation if necessary *)
w[1..3] := M[1,*]; (* assignment *)
P(M[0..3 ,0..3]); Q(v[*]); v := R(); (* procedure calls *)

Fig. 3. Usage of ranges

2.2 Operators

A large set of mathematical operators has been defined and implemented, some
of them in highly optimized form. The defined operators range from simple
unary operators like negation to complex ones like the matrix or tensor product.
Examples are given in Figure 4.
(* s: scalar; A,B,C: arrays; b: boolean; v: integer vector *)
s := min|max|sum(A); (* array -> scalar *)
A := -B; A := ~ B; A := abs(B); (* array -> array *)
A := short(B); A := long(B); A := entier(B); (* conversion *)
b := B =|<|<=|>|>=|# C; (* array x array -> boolean *)
A := B +| -|*|/|div|mod s; (* array x scalar -> array *)
A := B div|mod|+| -|.*|./ C; (* array x array -> array *)
A := B or|&|.=|. <|. <=|. >|. >=|.# C; (* array x array -> boolean *)
s := B +* C; (* scalar product *) A := B‘; (* transposition *)
A := B * C; (* matrix / vector product *)
A := B ** C; (* tensor product *) A := reshape(B,v); (* reshape operation *)

Fig. 4. Some built-in operators; ’|’ denotes an alternative

With the operators and subranges at hand, code can be written closer to math-
ematical notation and much more compact. As an extreme example observe the
compact version of Fig. 1 displayed in Fig. 5.
var u: array [*,*] of real; h: real;
(* ... *)
u[i..m,l..n] := u[i..m,l..n]+ u[i..m,i] ** (u[i..m,i] * u [i..m,l..n] / h);

Fig. 5. Most compact version of Fig. 1; ’**’ denotes an outer product

2.3 Custom Array Types

Since not all possible features can be implemented in a built-in array type, we
have made provision for the implementation of custom array types. We decided
not to arbitrarily extend the functionality of objects to support indexers but
merely to provide the concept of array structured object types in the language.
These object types harmonize with the concept of ’normal’ arrays and carry the
array structure already in their signature. As an example consider the following
layout of an implementation of sparse arrays.

type
Matrix = array [*,*] of real;
SparseMatrix = array [*,*] of real

var (* ... data variables etc. *)
(* allocation and shape *)
procedure new(i,j: integer);
procedure len(i,j: integer);
(* read access *)
procedure "[]"(i,j: integer): real;
procedure "[]"(i,j: range): Matrix;
(* write access *)
procedure "[]"(i,j: integer; r: real);
procedure "[]"(i,j: range; const A: Matrix);
(* ... *)

end SparseMatrix;

Fig. 6. Custom array type definition

2.4 Tensors

The large amount of new articles and independent work in many different ten-
sor applications indicates that tensor algebra will develop into a new branch
of signal processing. One important branch is the compact representation of
multidimensional data in imaging using tensors (cf. [5], [4]).
From the perspective of a programmer, tensors can be viewed as dynamic arrays
with an arbitrary dimension. From a mathematical point of view, typical opera-
tions, such as the tensor-matrix multiplication, tensor inner- and outer-product
and general multiplications along a subset of dimensions, should be supported
in the language and form the kernel of the efficient application of algorithms.
Both, arrays with dynamic dimensions4, and a selection of operators and built-in
functions are provided by our framework.
Dealing with arbitrary-dimensional arrays means that provision has to be made
to dynamically access elements or parts of arrays or the geometric information.
We solve this by adding a base-type range in the language that can take on
integer values or intervals such as a..b by c or *. Additionally the question
mark may be used to denote an arbitrary number of arbitrary ranges.
A non-trivial example of the application of the new constructs in the field of non-
uniform spline interpolation of multidimensional signals is displayed in Fig. 7.
4 We have however not arranged for a discrimination between covariant and contravari-

ant indices of tensors.

It depicts the implementation of the composition of a tensor G of rank M ∈ N
by a weighted sum of N ∈ N outer tensor-products of M ∈ N tensors of rank 1
each (vectors of length K ∈ N). That is

G =
N∑

i=1

Fi ·Bi,1 ⊗Bi,2 ⊗ · · · ⊗Bi,M

with Bi,j ∈ RK for all 1 ≤ i ≤ N , 1 ≤ j ≤ M , F ∈ RN .
Input of the algorithm is the N×M×k (k ≤ K) array B containing the non-zero
entries of rank one tensors and the vector F denoting the weights. The matrices L
and R for each 1 ≤ i ≤ N and 1 ≤ j ≤ M denote the interval containing non-zero
entries of Bi,j and therefore even a sparse tensor multiplication is implemented.
The result is written to the tensor G with rank (number of dimensions) M .
Note how expressions using the question mark can be used to define an iterative
application of some function over the number of dimensions.

procedure MultiProduct(const F: array [*] of real;
const B: array [*,*,*] of real;
const L,R: array [*,*] of integer;
var G: array [?] of real)

var i,N: integer;

procedure SubProduct(i: integer; f: real; var g:array [?] of real)
var j, m, l, r: integer;
begin

m := dim(g) -1; l := L[i,m]; r := R[i,m];
i f m > 0 then

for j := l to r do
SubProduct(i,f*B[i,m,j-l],g[j,?]);

end;
else

g[l..r] := g[l..r] + f*B[i,0,0..r-l];
end;

end SubProduct;

begin
(* pre: len(F)=len(B,0); dim(G)=len(B,1); len(G,i)=len(B,2) for all i *)
N := len(B,0) ; (* M = len(B,1); K = len(B,2) *)
for i := 0 to N-1 do

SubProduct(i,F[i],G);
end;

end MultiProduct;

Fig. 7. Example of the usage of arbitrarily dimensional arrays

2.5 Implementation and Performance

We have implemented the new arrays following the guidelines of simplicity
and safety. For the new dynamic-dimensional array types this meant additional
range- and dimensionality-checks. These checks cause an additional runtime cost
of about 20 percent for each element-access. However, when using optimized
operators on substructures of arrays theses costs vanish and are replaced by
performance-boost of a much higher order.

Some of the operators have been highly optimized by using vector capabilities
and parallel execution on multi-core machines. The matrix multiplication imple-
mentation in Matlab, for example, is very well optimized by using SSE (Stream-
ing Single Instruction Multiple Data Instruction Extension) instructions and an
accurately chosen cache aware layout (cf. [1, 3]). Using the same techniques on a
single processor machine, we could not do better than that. However, by utilizing
the two components of a dual-core processor, we could outperform Matlab by a
factor of 1.5. Apparently, the particular Matlab implementation we were com-
paring with, could not cope with more than one processor for the computation.
Standard software can be upgraded to this respect by use of thread-libraries.
Although the ATLAS project (Automatically Tuned Linear Algebra Software,
cf. [6]), for example, provides a successful example of an automated library op-
timization, we still argue from our viewpoint of simplicity that the tools for
exploiting the mathematical structure of more generic problems should be pro-
vided by the language and runtime.

3 Conclusion

We could show that an extension of a language with regards to the handling
of typical linear-algebra constructs such as matrices, vectors and tensors can
enhance code considerably both with respect to efficiency and readability. Con-
cluding this report we would like to mention that this work – in particular the
handling of tensors and custom array types – is subject to ongoing development.

Acknowledgement We thank Luc Bläser for many fruitful discussions and lots
of valuable tips.

References

1. D. Aberdeen and J. Baxter. Emmerald: a fast matrix-matrix multiply using In-
tel’s SSE instructions. Concurrency and Computation: Practice and Experience,
13(2):103–119, 2001.

2. F. Friedrich and J. Gutknecht. Array-structured object types for mathematical
programming. In D. E. Lightfoot and C. A. Szyperski, editors, JMLC, volume 4228
of Lecture Notes in Computer Science, pages 195–210. Springer, 2006.

3. J. A. Gunnels, G. M. Henry, and R. A. van de Geijn. A family of high-performance
matrix multiplication algorithms. In ICCS ’01: Proceedings of the International
Conference on Computational Sciences-Part I, pages 51–60, London, UK, 2001.
Springer-Verlag.

4. M. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles: Tensor-
faces. In ICPR(2), pages 511–514, 2002.

5. H. Wang and N. Ahuja. Compact representation of multidimensional data using ten-
sor rank-one decomposition. In ICPR ’04: Proceedings of the Pattern Recognition,
17th International Conference on (ICPR’04) Volume 1, pages 44–47, Washington,
DC, USA, 2004. IEEE Computer Society.

6. R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimizations
of software and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.

